
Bolt Beranek and Newman Inc.

Report No. 4856

AD-A2 2 4 048

HP3000 Internet Software:
Final Document DTI C

S ELECTE

JUL 17 1990SD2D

January 1982

IDLTM1nUTN S'TA.?bMIT A

DtJm~m, QUmiwutodAPV:,u" IM pubic reioal"

Prepared for:
Defense Advanced Research Projects Agency

90 07 16 432
NC M 1aUO hAg

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Menm Doa Bnifreq_

REPORT DOCUMENTATION PAGE BEFORE COIPLETINGF

1. REPORT NUMBEMR. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT A PERIOD COVERED

HP3000 Internet Software Final Document Final Report

S. PERFORMING ORG. REPORT NUMBER
4856

7. AUTHOR(@) B. CONTRACT OR GRANT NUMBER(s)

Jack Sax MDA903-80-C-0214

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Bolt Beranek and Newman Inc.
10 Moulton Street, Cambridge, MA 02238

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency January 1982
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, VA 22209 90
14. MONITORING AGENCY NAME a ADORESS(l diflerent from Controlling Office) 1S. SECURITY CLASS. (of this report)

Defense Supply Service - Washington Unclassified
Rm ID 245, The Pentagon

Rm 1D 45, Th PentaonI15. OECL ASSI F1CATION/ DOWN GRADING
Washington, DC 20310 SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release/distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. II different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necesary and Identify by block number)

Transmission Control Protocols (TCP); Internet Protocols (IP); HP3000
Intrinsic; ARPANET Intelligent Network Processor (INP).

20. ABSTRACT (Continue on revere side If necessary and Identify by block number)

This report is the final document for implementing TCP on an HP3000
computer connected to the ARPANET.

DD O . 1473 EDITION OF I OV 5 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dom Entered)

Report No. 4856 Bolt Beranek and Newman Inc.

HP3000 Internet Software:

Final Document

I ACCesc:, For

NTIS CRA&I

DrIC TAB o
January 1982 Vnannoi'iced 0

Justification

By

Distribution I

CIO Availability Codes
Avail 3nd I or

Dist Special

IA-i

Prepared for:
Defense Advanced Research Projects Agency

Report No. 4856 Bolt Beranek and Newman Inc.

Table of Contents

1 Preface ... 1
2 Introduction 2
3 Current HP3000 Structure 5
3.1 Processor Features 5
3.2 Network Interface Hardware......................... 6
3.3 Operating System Software 6
3.4 Input/Output .. 8
3.5 Interprocess Communication 9
3.6 Existing INP Software o 12
4 Protocol Software Architecture 13
5 System ProtocolSoftware............................. 17
5.1 Implemented Features.................. 17
5.2 Software Architecture Overview 18
5.3 Control Structures 20
5.3.1 Network Resources Control Block 21
5.3.2 Foreign Host Control Blocks 21
5.3.3 Connection Control Block.........................22
5.3.4 Network Buffer Resources List Structures 22
5.3.5 Timer Event Queue 24
5.3.6 Data Message Buffer Structure 24
6 The User Process Interface to the TCP and IP 26
6.1 Interface Intrinsics 27
6.1.1 UIbuf format 396.1.2 MSGBUF format0. 40

6.1.3 Transmit and Receive buffer overhead format 40
6.1.4 Network Intrinsic errorcodes.................... 42
6.2 Flow Control Across the Interface 44
6.3 Interface Control Structures 44
6.4 Windowing, Acknowledgment, and Retransmission 45
7 Protocol Software Buffering Scheme................... 47
7.1 Network Buffer Pool 49
7.1.1 Packet Compaction950

7.1.2 Buffer Recycling 51
7.2 User Process Buffer Pool 53
8 Data Flow through the Protocol Software 55
8.1 ARPANET to the User Level Data Flow................ 56
8.2 User Level to the ARPANET Data Flow#............... 59
9 FTP Program User Document 61
9.1 FTP Commands 61
9.2 Example of an FTP Session 64
10 TELNET Program UserDocument........................ 67
10.1 TELNET Commands 68
10.2 Example of a TELNET Session 70

APPENDIX A - HP3000 to ARPANET Link 72
APPENDIX B - Protocol Software Organization 73
APPENDIX C - Control Stuctures 74
APPENDIX D - Command Message Formats 85
APPENDIX E - User Program Data Structures................ 88

-i-.

Report No. 4856 Bolt Beranek and Newman Inc.

Report No. 4856 Bolt Beranek and Newman Inc.

1 Preface

- This report is the final documentation of the software used

to implement the Internet protocols on the Hewlett Packard HP3000

Series III computer system. Specific protocols implemented

include a Transmission Control Protocol (TCP), Internet Protocol

(IP), File Transfer Protocol (FTP), and TELNET Protocols.

The reader is assumed to be familiar with the purpose of

these protocols and have a user-level understanding of the MPE

operating system. , .

IAl

I -1-

Report No. 4856 Bolt Beranek and Newman Inc.

2 Introduction

The Internet protocols are implemented in five layers with

each layer performing specific functions. Protocol layers one

through four represent the system layers which are responsible

for moving a message reliably from one host to another. The

fifth protocol layer consists of a number of applications

protocols which determine the content and meaning of the messages

exchanged.

Protocol levels one and two are X.25 LAP link access

protocols. These protocols are implemented in microcode on the

Intelligent Network Processor (INP) interface available from

Hewlett-Packard. Since the X.25 LAP protocols are different

from the standard 1822 IMP Host protocols, a special X.25 IMP

interface is used to link the HP3000 with the ARPANET. The

interface divides standard 1822 packets into a number of X.25

frames and transfers each frame separately. The diagram in

Appendix A shows the hardware configuration used to link the

HP3000 to the ARPANET.

The next two protocol layers consist of the DOD standard

Internet Protocol (IP) and the Transmission Control Protocol

(TCP). The Internet protocol provides communication between

Hosts on different networks via gateways between the networks.

The Transmission Control Protocol provides reliable transmission

between Hosts and performs some Host-to-Host flow control.

-2-

Report No. 4856 Bolt Beranek and Newman Inc.

Both the TCP and IP protocols have user level interfaces

which allow the applications protocols to send TCP byte streams

and IP datagrams. These interfaces are implemented through a set

of system commands which can be called from any user program.

The initial implementation includes three application layer

protocols. One of these is the File Transfer Protocol (FTP)

which allows a user to move files from one computer system to

another. The second and third application layer protocols are

User and Server TELNET. User TELNET gives the user a remote

terminal capability by taking the characters from the local input

device and sending them to the foreign host. and returning

characters from the foreign host to the local output device

(typically a terminal). The Server TELNET acts as a pseudo-

Teletype, with incoming network messages providing TTY input, and

TTY output being sent to the network. The operating system

treats the Server TELNET pseudo-Teletype like an ordinary

terminal.

Most of the protocol software is new code. the major

exception being the INP microcode which is supplied by Hewlett

Packard. The programs are written in HP's Systems Programming

Language (SPL), which resembles PASCAL and allows intermixing of

assembly code and compiled code. In addition to new code.

implementation required one change to the MPE operating system

code. This change will be incorporated into HP's standard

-3-

Report No. 4856 Bolt Beranek and Newman Inc.

operating systems releases.

-14-

Report No. 4 85 6 Bolt Beranek and Newman Inc.

3 Current HP3000 Structure

This section describes the HP3000 system with an emphasis on

the features that affect the network software design. The

description includes both the processor hardware and the

operating system.

3.1 Processor Features

The HP3000 CPU is a medium speed machine which uses a stack

architecture. It executes uncomplicated instructions in one to

two microseconds. Code and data are separate and thus all code

is re-entrant. There are approximately 38 hardware registers

which make up the state of the processor; most of these are

associated with the stack (data) and the current instruction

address (code).

Memory is divided into segments. A segment is a contiguous

block of memory of any desired length up to 32K words.

Individual segments are swapped it. and out of memory as needed.

Memory paging, a scheme which uses fixed size memory chunks as

the basis for memory swapping, is not used in the HP3000. A

segment may be designated as code or data by the operating

system.

-5-

Report No. 4 85 6 Bolt Beranek and Newman Inc.

3.2 Network Interface Hardware

The interface unit between the HP3000 computer and the

ARPANET machines is HP's Intelligent Network Processor (INP).

This device consists of two boards located in the HP3000 main

cabinet. It is a microprogrammed interface unit whose microcode

is down-line loaded by HP3000 software. HP supplies the

microcode to make the INP obey the X.25 LAP protocol and the

device driver necessary to access the INP.

The INP is connecteJ to a BBN C/30 IMP via an RS422 cable.

3.3 Operating System Software

The operating system for the HP3000 is known as the

Multiprogramming Executive System (MPE). It offers both batch

and interactive job capabilities and allows multiple concurrent

users of either type. It offers a file system which manages

files on disk, magnetic tape and/or punched cards. Some I/O

devices, such as the line printer, have spooler programs built in

to the system.

User programs are run as processes within MPE. Each process

has associated with it a code segment and a stack (data) segment.

In privileged mode it may run in "split-stack mode", where it is

allowed to have two data segments. The most common use of

split-stack mode is to access tables in the operating system

-6-

Report No. 4856 Bolt Beranek and Newman Inc.

during system calls.

The design of MPE is greatly influenced by the HP3000

hardware architecture. MPE's organization relies heavily on

operations which incur little processor overhead while avoiding

operations which irur large amounts of processor overhead. The

most striking example of this is the MPE's dependence on user

processes for a large number of what would ordinarily be

considered system functions. MPE avoids the use of "system"

processes to perform these functions.

The design organization is a direct result of the stack

architecture of the HP3000. The large number of status registers

which must be saved when a new process is invoked makes process

switching a very expensive operation. The time needed to perform

a procedure call into a new segment of system code is typically

less than the time to switch context from one process to another.

Writing efficient code for this machine has thus led to

organizing the system as relatively independent "utility"

routines callable by the user rather than as a collection of

separate processes which manage I/O devices and system utilities.

These operating system calls, named Intrinsics, are implemented

as subroutine calls into system code segments. The program

segments which implement the Intrinsics run in a privileged mode

which allows them to directly access system tables and I/O device

tables.

-7-

Report No. 4856 8o1 berarteA and Neweb 2c.

One notable 31e-effe~lt 3 !2. 5 it '. V- 1 ell

resources such as 1T/0 device1 5 ar t c t-. a -!.

program and are not normally 3rtarei. Tt5 bPrCbt r= do.t,

the system programmers to create & ccun;,. cv tolt#- ty:en.

without tackling the problems of InterproctS lcacam? rld

resource sharing. As will Oe 4tacu*3a .*ter. ,i *Ac K*

significant effect on protocol softaare 402:1.

3.4 Input/Output

Input/Output operations typica.y cons. t or twc o . The

first step is Initiation of the desired opors.Acr,. Tha o vc,;vek

checking to insure that access to the dev~ce i a wcved (;cf v*re

protection), and issuing I/O instriction3 tc tt-q (eve tr

initiate the desired action. This step usually occura or a

result of an intrinsic call to the device hand;er code ar;d thkis

is executed on the user's stack. The secord ste; As the

operation completion handling. This may occur using either the

Interrupt Control Stack (ICS) or the System Control Stack,

neither of which is the user's stack. The choice of which stack

to use depends on the specific device's function.

A consequence of this system design is that "syste-m code"

tends to be executed using the data stack of the first user

process needing the function. If process 1 wants to do an I/O

operation, it invokes a system procedure which knows how to

-8-

Report No. 4856 bc't eraek and Niewman Inc.

manage that 1/0 jelcf 5 ! e.. f , . ,. r.vcxe the

same cIevtce, and If the levice 1. zaa C z~ ~t'.gfwr !a

on MOrequest COnc'jrrent y, t fvo~ej ti,- 3&fe c~t~ Svc,

multiprocessing hazard3 n L3o,;r5 ::C cozzanm.. the system

procedure first chrecis to see if it is '.e first invocation of

itself -- if not. it queues the reqveat and calts; if at 13, it

proceeds to Issue the :/0 Instructions. If the request Was

queued, it is assumed that tihe first process wI. detect the

newly quoeq r4elet 4r~d pr*oco3: it 5z. Th "71-e proct55 : -

thus performtrg system tunction3 for the 3econd and all 16ter

processes, and will be charged run time for doing their work. In

practice, we do not expect this to be signlfcant. but In theory,

the first process could run Indefinitely, even If Its own request

had long since completed.

3.5 Interprocess Communication

Interprocess communication under the current version of MPE

is a problem. Only two techniques are currently avallable and

neither of them is really satisfactory.

One technique that may be used is that of the logical

device. It is chiefly used to accomplish multiplexing of

physical devices. This facility is implemented by creating a new

entry in the system's Device Information Table. and by creating a

set of procedures which act as a device handler. The handler

-9-

Report No. 4856 Bolt Beranek and Newman Inc.

will be run in privileged mode.

Like other system device handlers, the procedures to manage

the device are invoked directly by the user process. and the

user's stack is used by the system code. This has the advantage

of speed, since it avoids some process context switching.

There are a number of drawbacks to this technique. First.

the Device Information Table entry must be maintained as if it

were a real hardware device. This requires knowledge of all the

MPE internal functions that might access this table.

Furthermore. since these tables are system internal, they *are

subject to change with each new release of MPE. Use of the table

requires Privileged Mode. Bugs in the code would have a greater

chance of crashing the system. The greatest drawback is that

logical devices are still under development at HP, and are more

than usually likely to change over time.

A new operating system feature. not yet released officially,

that has been written for MPE is an interprocess communication

method known at HP as message files. These correspond to UNIX

ports, and allow unrelated processes to communicate with one

another. Each message file has one or more "reader" processes

and one or more "writer" processes. During use. these files act

as FIFO queues.

-10-

I
Report No. 4856 Bolt Beranek and Newman Inc.

Message files are implemented using the file system. Read,

write, and query commands are all patterned after the file system

commands. The message file code is designed so that if readers

and writers stay more or less in synchronization, disk I/O will

not be needed. However. if the writers get far enough ahead of

the readers, the message file will start being spooled out onto

disk.

Message files are to be introduced as user level functions

by HP, and, as such. their use will not change with new releases

of the operating system. Code for this feature has already been

implemented at HP and is available with both MPE III and the

future MPE IV. They appear to be relatively easy to use and do

not require knowledge of the internals of the operating system.

Their chief drawbacks are that a process context switch is

required between writer and reader, and that some file system

overhead is incurred.

Timeouts, as seen in message files, are another new HP

function that will be available. The older version of timeouts

simply suspended the process for a fixed amount of time. but did

not allow the process to be awakened by the completion of an I/O

event during its sleep. The new version is equivalent to setting

a timer whose alarm may be awaited with the same IOWAIT intrinsic

that awaits I/O completion. It alows a process to wait for

either some I/O device operation completion or the passage of

-11-

Report No. 4856 Bolt Beranek and Newman Inc.

some maximum amount of time. whichever occurs first.

Alternatively. a timeout could be used to insure that waiting for

a specific event will terminate if the expected event does occur

soon enough. There will be both user level and system internal

ways of accomplishing timeouts.

3.6 Existing INP Software

The code to drive the INP is part of the CS/3000

Communications Software package from HP. It contains code to

send and receive packets via the INP and code to manipulate the

Device Information Tables. The code also allows the user to

down-line load microcode into the INP memory. It contains

intrinsics to open and close the line and to read and write

packets. The microcode allows the INP to support X.25 LAP

protocols and also allows the INP to buffer up to eight 128-byte

packets. These packets are read by CS/3000 as soon as possible

in order to keep the INP from losing packets due to a lack of

buffer space in the INP. This technique allows the INP to

function as a full duplex device, even though the MPE operating

system offers only a half duplex control mechanism in its

software.

-12-

Report No. 4856 Bolt Beranek and Newman Inc.

4 Protocol Software Architecture

The protocol software architecture is dictated by a set of

design requirements and MPE operating system constraints. These

requirements and constraints are summarized as follows:

- The new network software must be isolated from the existing

operating system as much as possible. The isolation will

allow any site to add or remove the network software with a

minimum of effort. It will also make the network software

less vulnerable to any changes HP makes to MPE.

- Efficient high speed network communications are extremely

important because this TCP version will be used on a

production rather than an experimental basis.

- One of the problems with MPE is that, though the operating

system performs device assignment and access control for its

I/O devices, the user process is responsible for operating

the I/O device. MPE does offer intrinsics to operate common

devices, but these are very low level operations. This I/O

arrangement makes it difficult to control an asynchronous

network interface. The protocol software architecture will

therefore require at least one process which has exclusive

control of the INP interface.

- One of the properties of these network protocols is that the

message acknowledgments and retransmissions occur at a

-13-

Report No. 4856 Bolt Beranek and Newman Inc.

relatively high level -- in the Transmission Control

Protocol in layer four. A moderate amount of time passes

from the time the originating TCP queues the message for

transmission and the receiving TCP gets the message. In

order to prevent acknowledgment delays which in turn cause

the foreign host to retransmit data, the software

architecture should minimize the amount of time it takes for

incoming data to move through the 1822, IP, and TCP

protocols.

With many network users and many connections concurrently in

use, the network software must be able to handle the

problems of multiplexing use of the network interface

hardware. The interface on which the multiplexing takes

place must support a number of simultaneous users in such a

way that the behavior of any individual user does not affect

data throughput of the other users.

In order to meet all of the design requirements and

constraints described above, the HP3000 protocol software is

implemented in a set of processes (see diagram in Appendix B).

One process which will be called the system protocol process is

responsible for maintaining the INP interface as well as

supporting the 1822, IP and TCP protocols. The rest of the

processes, called applications protocol processes, support the

user interactive network functions including FTP and TELNET.

-14-

Report No. 4856 Bolt Beranek and Newman Inc.

The use of a single system protocol process is a key element

in the protocol design. The system protocol process provides

control over the INP interface by providing buffers and acting as

multiplexer and de-multiplexer of network traffic to and from the

INP. Use of a single process minimizes inter-protocol layer

communication delays which in turn minimize the acknowledgment

delays for incoming data. A single system protocol process makes

it possible to use interprocess communication primitives to

provide a uniform network interface for the applications level

protocol processes.

User TELNET and User FTP protocols are to be implemented as

ordinary user programs. They use the same system calls as any

other network accessing program. but are written to provide a

higher level command language for the user. As user programs,

they execute in the user's address space with the privileges

normally available to the user. The User TELNET and User FTP

programs are re-entrant, with as many processes running this code

as users wishing the service.

Server TELNET is a single process created as the system

starts up or whenever the first need for it arises. De-

multiplexing of Server TELNET inputs is accomplished via a

pseudo-teletype driver. The driver acts as the interface between

the Server TELNET process and the Teletype handler.

-15-

Report No. 4856 Bolt Beranek and Newman Inc.

The interface between application protocol processes and the

system protocol process is through a set of IP and TCP

intrinsics. The intrinsics are designed to form a uniform

interface between the user and the IP and TCP. Actual data

communication between a user process and the system protocol

process is done with a combination of message files and direct

buffer-to-buffer transfers. Message files are used to pass flow

control information while the actual data transfer is made by

copying data between user buffers and system protocol buffers.

The combination of message files and buffer copy is used to take

advantage of the flexibility of message files and the data rates

achieved by direct data copy.

-16-

Report No. 4856 Bolt Beranek and Newman Inc.

5 System Protocol Software

Since this TCP/IP protocol implementation is to be used on a

production rather than an experimental basis, the design effort

has concentrated on the efficiency rather than the sophistication

of the protocol software. At the same time. the software design

does allow for the future enhancement. There are no inherent

design limitations which will prevent implementation of the more

sophisticated TCP and Internet features.

5.1 Implemented Features

The specific TCP and Internet features to be implemented

include the following:

- multiple connections to multiple hosts,

- flow control at the 1822, Internet, and TCP layers,

- error recovery.'

- fair allocation of resources among all connections,

- handling of urgent data.

- surviving incorrect packets,

- datagram reassembly.

- a user level interface for both the IP and TCP protocols,

- routing.

-17-

Report No. 4856 Bolt Beranek and Newman Inc.

5.2 Software Architecture Overview

The system protocol software architecture reflects the need

to avoid packet processing delays rather than a strict hierarchy

between protocol layers. The system protocol software is

implemented as a single process to allow the system protocol

layers to share software resources for greater efficiency. The

shared resources include subroutines which perform functions

required by more than one protocol layer, and a common buffer

pool to optimize storage resources and to allow efficient

communication between protocol layers.

Network traffic through the system protocol process takes

different forms including 1822 packets, datagrams, and TCP

segments. These various forms are generically referred to as

"packets." Packets are passed into the system protocol process

from either an applications protocol process or the ARPANET

interface. Packets from the ARPANET dre passed into the system

protocol process by intrinsic calls to the INP interface. User

generated network packets are passed to the system protocol

process by using a combination of message files and data buffers.

Message files are used to transfer control and status

information, while data transfer is done with buffer-to-buffer

copies between the user protocol data segment and the system

protocol data segment.

I
-18-

Report No. 4856 Bolt Beranek and Newman Inc.

All read and write commands are done without wait to allow

the system protocol process to simultaneously multiplex I/O

channels and process network packets. I/O multiplexing is

implemented through the IOWAIT intrinsic. The system protocol

process issues an IOWAIT intrinsic after it finishes processing a

data packet. The IOWAIT intrinsic returns the file number of the

I/O channel associated with an I/O completion wakeup.

When the number of free buffers falls below a prescribed

limit, an attempt is made to free buffers through data

compaction. The attempt begins with a search for datagram

fragments and unacknowledged TCP segments which waste buffer

space by using only a fraction of the available space in each

buffer assigned to them. This lack of efficiency can be

particularly damaging because there is no guarantee that the data

contained in the buffers will ever be processed. Wherever

possible, datagram fragments are combined into a single datagram

fragment and TCP segments are combined into a single segment to

more efficiently utilize system buffers. Any buffers freed by

this compaction process are returned to the free list.

Network packets from both the user process and the ARPANET

are processed along one of a number of data paths in the system

protocol process. Tha actual data path taken depends on the type

of data packet and, in the case of TCP segments, the state of its

associated network connection. Packet processing is performed by

-19-

Report No. 4856 Bolt Beranek and Newman Inc.

a series of function calls which act as processing steps along

the data path.

In order to avoid processing delays which can tie up system

resources, each arriving data packet is processed through as much

of the protocol software as possible. Processing of a packet is

suspended only when the lack of some resource or some external

event prevents further processing.

5.3 Control Structures

All of the status information both for individual network

connections and for the system protocol software as a whole is

kept in a set of control blocks as well as in a number of buffer

list structures as shown in Appendix C. The control blocks

include a general network resources control block, a foreign host

control block for each foreign host connected to the local host.

and send and receive control blocks for network connection. The

list structures include a network buffer free list, a TCP buffer

aging list, an Internet buffer aging list, and a timer queue

list. The relationships between the various control blocks and

the list structures are shown in the first diagram in Appendix C.

-20-

Report No. 4856 Bolt Beranek and Newman Inc.

5.3.1 Network Resources Control Block

The Network Resources Control Block contains the information

needed to maintain the network buffer free lists and aging lists.

This information includes pointers to the network buffer free

lists and aging lists and a count of the buffers in each of the

lists.

The information contained in the Network Resources Control

Block is used by the protocol software to control the

distribution of network buffers among the various lists. The

information is scanned at various times to determine the

allocation or disposition of a partiiular network buffer. The

determinations occur when new buffers are allocated from the free

list and when buffers containing TCP segments are about to be

acknowledged. Decisions are made based on the number of free

buffers available and the priority of the task requiring the

buffers.

5.3.2 Foreign Host Conl--il Blocks

Foreign Host Control Blocks are uspd to maintain flow

control within the 1822 protocol layer. The information

contained in this block includes the foreign hosts IMP and HOST

identification numbers, a count of the number of TCP connections

to this host. a count of the number of outstanding 1822 packets

-21-

Report No. 4856 Bolt Beranek and Newman Inc.

which have not been acknowledgeo w,.tr a FFM4. and the I

message id for each of the outstanding 1822 pacets.

The counter is used to prevent transmison of too many 1822

packets to a single host. All transmission to the fore:&n host

is blocked when the counter reaches the limit of eight

outstanding 1822 packets to that host.

5.3.3 Connection Control Block

Each TCP connection has an associated control block. The

control block contains data associated with the Transmission

Control Block (TCB) along with other connection related

information. Specific information included in the control block

is shown in the diagram in appendix C.

5.3.4 Network Buffer Resources List Structures

Three list structures are used to maintain the network

buffer resources shared by all of the sockets. These list

structures include the free list and the two buffer aging queues.

The network buffer free list contains all of the network

buffers currently available for use by any socket. These buffers

are allocated when new data comes in from either the network or a

user protocol process.

-22-

Report No. 4856 Bolt Beranek and Newman Inc.

The Internet Aging Queue is a list of active buffers

assigned to blocked datagram fragments and complete datagrams.

These buffers are the first to be reclaimed when there are no

free buffers available. The Queue is sorted according to

datagram age. All buffers which belong to the same datagram are

combined into a single list structure. The datagram list

structures are linked into the Internet Aging Queue with the

least recently updated datagram always at the head of the queue.

When a new datagram fragment comes in it is moved to the end of

the queue along with all of the other fragments which belong to

the same datagram.

The TCP Aging Queue is a list of buffers which contains at

least parts of unacknowledged TCP segments. These buffers can be

reclaimed when there are no free buffers and no buffers on the

Internet aging list. The Queue is sorted by socket. All buffers

which contain data for the same socket are combined in a buffer

list and each buffer list is linked into the queue. The queue is

sorted by the age of the data associated with each socket. Data

belonging to the socket which has been inactive for the longest

period of time is placed at the head of the queue so it can be

recycled first. When a user process reads data from a

connection, all the network buffers still waiting to be read on

that connection are moved to the end of the TCP aging list. This

assures that data associated with an active TCP connection will

not be recycled ahead of data associated with an inactive TCP

-23-

Report No. 4856 Bolt Beranek and Newman Inc.

connection.

5.3.5 Timer Event Queue

The Timer Event Queue is a linked list of buffers which

contains information about future protocol events. These events

include the various transmission timeouts used by the protocols.

Each event buffer is linked into two list structures, one master

list structure includes all timer events for all connections the

other list includes all timer events for a particular TCP

connection. The event buffers are sorted in chronological order

with the earliest event as the first element in each list. A

special message file is used to schedule a interrupt for the

first element in the master list. When the timer goes off the

event is executed and the event represented by the second element

in the master list is scheduled.

5.3.6 Data Message Buffer Structure

All data messages to and from the network are stored in the

buffer structure shown in appendix C. The first buffer in the

structure contains the 1822 header and the overhead information

needed by the various protocol layers to process the message.

The second and succeeding buffers contain the actual 1822 data

which includes the TCP and IP headers as well as any TCP data.

-24-

Report No. 4856 Bolt Beranek and Newman Inc.

In addition, each buffer has a one-word HDH header used to

identify the buffer type and the amount of data in the buffer

(see BBN Report 1822).

-.25-

Report No. 4856 Bolt Beranek and Newman Inc.

6 The User Process Interface to the TCP and IP

The interfaces between the user process and the TCP and IP

protocol software are designed to meet two basic requirements.

First, the interfaces must support high speed data transmission

between the user and system protocol layers; this is especially

important since these interfaces involve interprocess

communication which could be delayed by excessive system overhead

due to context switching and process scheduling. Second, the

interfaces must isolate the system protocol process from any

buffer overhead burdens caused by processing delays in the user

process. System protocol process buffers are too valuable a

resource to be locked into storing TCP segments or IP datagrams

which are waiting for response from a user process.

High speed data transmission across the interfaces are
/

achieved by copying data directly from buffers in the user

process to buffers in the system protocol process. The direct

transfer is implemented with the move-to-data-segment and move-

from-data-segment instructions provided by the HP3000.

The system protocol process is isolated from delays in the

user process by making the user process responsible for buffering

TCP data segments and IP datagrams. Acknowledged incoming TCP

segments, and TCP segments and IP datagrams waiting to be

transmitted over the INTERNET, are stored in buffers in the user

protocol process. This use of user buffers serves two functions:

-26-

i
Report No. 4856 Bolt Beranek and Newman Inc.

it frees system protocol buffers from being locked into storing

TCP and IP data. and also gives the user process some control of

network connection throughput. Throughput control is

accomplished by allowing each user process to choose the amount

of buffer resources it dedicates to each connection.

6.1 Interface Intrinsics

The interfaces between the TCP and IP software and the user

process are implemented through a set of intrinsics. These

intrinsics allow the user process to create and use network

connections with other processes on foreign hosts.

Twelve intrinsics provide the basic control functions needed

to transfer data through the TCP and IP interfaces. The TCP

intrinsics allow the user to create network connections with

other processes on foreign hosts. Each connection consists of a

pair of sockets as defined in the TCP protocol document.

Connections are created with a TCP'OPEN intrinsic whose

parameters define the sockets which make up the connection.

After a connection is created, the user process uses the TCP'SEND

and TCP'RECEIVE intrinsics to send or receive data. The TCP'STAT

intrinsic allows the user to check the status of a connection.

Within the user process. connections are identified through

the combination of a connection file number and a connection

-27-

Report No. 4856 Bolt Beranek and Newman Inc.

buffer. The connection file number is returned by a successful

TCP'OPEN call. The connection buffer is an integer array

allocated by the user process. The buffer is initialized by the

TCP'OPEN intrinsic and is then passed as the first parameter to

all of the other TCP intrinsics. It is the responsibility of the

user process to maintain the association between the connection

file number and the connection buffer.

The IP intrinsics allow the user to send IP datagrams to

other processes on foreign hosts. Communication is initiated

with the IP'OPEN intrinsic whose parameters define the type of

datagrams the user process will accept. While there is no such

thing as an IP connection, the IP'OPEN intrinsic creates a pseudo

connection to handle the datagram traffic to and from a process.

Once the pseudo connection is created, the user process uses the

IP'SEND and IP'RECEIVE intrinsics to send or receive data.

The TCP and IF interfaces are entirely asynchronous so that

a user process can queue any number of read or write requests to

a particular connection. The user process has three limitations

in this regard: first. it must provide the buffers associated

with each intrinsic call; second, the user process must keep

track of which buffers are associated with each I/O call; and

third, the user process cannot dequeue buffers until it has

permission to do so from the system protocol process.

-28-

Report No. 4856 Bolt Beranek and Newman Inc.

The user process uses a combination of the IOWAIT and the

NET'COMPLETE intrinsics calls to keep track of I/O completion

events. The IOWAIT intrinsic is invoked when the user process

has completed processing all of the current data. When the

IOWAIT intrinsic returns with a file number associated with a TCP

or IP connection, the NET'COMPLETE intrinsic is called to handle

the I/O completion. The NET'COMPLETE intrinsic uses the

connection buffer to determine the cause of the I/O completion

and then performs the appropriate I/O cleanup task and returns an

I/O-type code to the user process.

This is a summary of the TCP (Transmission Control Protocol)

and IP (Internet Protocol) intrinsics, their arguments, and the

errors that may arise. A negative number returned by any of

these intrinsics indicates an error; zero or positive numbers

indicate successful completion. Standard HP notation is used.

I IA IP IP

errnum := TCP'Abort(UIbuf.Rbufptr.Sbufptr);

UIbuf is the connection buffer detailed below.

Rbufptr will return either NULL or a pointer to the first
receive buffer freed.

Sbufptr will return either NULL or a pointer to the first
transmit buffer freed.

This intrinsic will abort the connection indicated by the

contents of UIbuf. It will wait until the connection is aborted

before returning. If the abort went smoothly 0 will be returned,

-29-

Report No. 4856 Bolt Beranek and Newman Inc.

otherwise an error code will be returned.

I IA DV IV IV IV IA O-V

filenum := TCP'Open(UIbufFHIA,FP,LP,AP,baddr);

UIbuf is a connection block whose format is shown below.

FHIA is the Foreign Host Internet Address.

FP is the Foreign Port number.

LP is the Local Port number.

AP is a word indicating the type of open:
0 Active open (initiate contact with foreign host)
1 Partial listen (nonspecific wait for foreign

connection)
2 Active listen (wait for specific foreign connection)

BADDR is an optional argument that may specify a buffer for
the reception of data. If supplied, the buffer size
will be used as the initial window size for the
connection. If not supplied, the initial window size
will be zero.

TCP'Open initiates a TCP connection on an unassigned port.

When this intrinsic returns, a connection has been defined in the

system. but the connection may not yet be open to the foreign

host. The value of FILENUM is the value that will be returned

from IOWAIT when there is activity regarding the connection. It

is up to the user program to keep track of this number.

If a connection cannot be opened, an error code will be

returned instead of a file number.

-30-

Report No. 4856 Bolt Beranek and Newman Inc.

I IA IA LV
errnum := TCP'Send(UIbuf.baddr,eol);

UIbuf is the connection block described below.

BADDR is a single buffer of data to be transmitted. See
below for buffer format.

EOL is the end-of-letter flag. If TRUE. the end of the
buffer passed will be marked with end-of-letter.

TCP'Send will queue one buffer at a time for transmission

over the connection indicated by UIbuf. If transmission is

allowed and the buffer is successfully queued 0 will be returned;

otherwise an error code will be returned indicating the reason

for the failure. BADDR will be set to zero if the buffer has

been taken by TCP'Send.

This intrinsic does not wait for data to be sent. Buffers

whose data have been sent and acknowledged are returned to the

user via the Net'Complete intrinsic.

I IA IA

errnum := TCP'Receive(UIbuf.baddr);

UIbuf is the connection descriptor shown below.

BADDR is a buffer for receiving data whose format is
detailed below.

TCP'Receive will queue the buffer provided for data

reception. The window size advertised to the foreign host will

be incremented by the size of the buffer. If successful 0 is

returned, otherwise an error code will be returned. BADDR will

be set to zero if the buffer is taken by the intrinsic.

-31-

Report No. 4856 Bolt Beranek and Newman Inc.

This intrinsic does not wait for data to be read. Buffers

with incoming data are received via the Net'Complete intrinsic.

I IA IA

errnum :: TCP'Status(UIbuf.Sarray);

UIbuf is the connection descriptor detailed below.

SARRAY is an array to which the status information is
returned.

TCP'Status reads parameters describing the state of the

connection into the array SARRAY. If successful. 0 is returned,

otherwise an error code is returned. The format of the array is:

Sarray Symbolic Symbol
Offset Name value Contents

0 status'locport 0 Local port number
1 status'fport 1 Foreign port number

2-3 status'fhost 1 Foreign Host Internet address
4-5 status'Rwindow 2 Receive window
6-7 status'Swindow 3 Send window

I IA
errnum := TCP'Close(UIbuf);

UIbuf is the connection descriptor block shown below.

TCP'Close will initiate closing of the transmit side of the

connection. Further data transmission on this connection will

not be allowed. The connection should not be considered actually

closed until the appropriate code from Net'Complete has been

received.

-32-

Report No. 4856 Bolt Beranek and Newman Inc.

If closing the connection could be initiated, 0 will be

returned, otherwise an error code will be returned.

I IA IA IP IP I I

fcncode := Net'Complete(UIbuf.msgbuf.Rbuf.Sbuf.Rbp,Sbp);

UIbuf is the connection descriptor block.

MSGBUF is an array (0:10) used to receive signals from the
TCP process. The message received is interpreted by
Net'Complete.

Rbuf is nominally a receive buffer pointer returned to the
user, or NULL.

Sbuf is nominally a transmit buffer pointer returned to the
user or NULL.

Rbp may be a byte pointer into the receive buffer Rbuf or
unchanged.

Sbp may be a byte pointer into the buffer Sbuf or garbage.

Net'Complete is used to interpret the message from the TCP

network process read by the user program's IOWAIT. Depending on

the message, Net'Complete may want to signal the user that some

event of interest has occurred. The function code returned

indicates whbt event has occurred and also determines how the

various arguments are to be interpreted. The function codes are:

ClosedTR Transmit and receive sides of the connection have both
been closed. The connection no longer is defined in
the system. and all attempts to access it will be
invalid.

RBUF points to the head of a chain of receive buffers;

SBUF points to the head of a chain of transmit buffers;

If there are no buffers to be returned, the pointer

-33-

Report No. 4856 Bolt Beranek and Newman Inc.

will be set to NULL. RBP and SBP are not modified.
The buffer chains termin ate with a NULL.

ClosedT The transmit side has been closed and the closing
acknowledged by the foreign host. Data may continue
to arrive on the receive side of the connection.

SBUF points to the head of a chain of transmit buffers. If
there are no buffers to be returned, SBUF is set to
NULL.

ClosedR The receive side has been closed. No further data
will be received. Transmission of data may still be
allowed.

RBUF points to the head of a chain of receive buffers. If
there are no buffers to be returned, RBUF is set to
NULL.

Note: When the "first" side closes, only CLOSEDR or CLOSEDT is
returned as appropriate. When the "second" side closes, the
system will note that the other side is already closed and return
CLOSEDTR.

DSent One or more buffers has been transmitted to the
foreign host and, if TCP, acknowledged as received.
The buffer(s) are returned to the user.

SBUF In TCP, points to the head of a chain of transmit
buffers. The chain is terminated by a NULL pointer.
In IP, a single buffer (not a chain).

DRcvd Data has been received from a foreign host. If TCP,
there will be at least one byte of new data. If IP, a
datagram has been received.

If IP the intrinsic argument returned is

RBUF pointer to a buffer containing the datagram received.
The length of the datagram will be found in
ubo'datagramsize in the buffer overhead. The buffer
is returned to the user.

If TCP the intrinsic arguments returned are

RBUF pointer to the buffer containing the first byte of new
data;

RBP byte pointer to the first byte of new data in RBUF;

-34-

Report No. 4856 Bolt Beranek and Newman Inc.

SBUF pointer to the buffer containing the first byte past
the end of the new data;

SBP byte pointer to the first byte beyond the end of the
new data.

Buffers from RBUF to SBUF are chained through ubo'link
in the usual manner. The buffer pointed to by SBUF is
still cwned by the system. but all other buffers from
RBUF to SBUF are being returned to the user. If there
is urgent data. the urgent pointer in ubo'urgent of
the buffer overhead words will indicate the last byte
of such data.

ConAbort The network connection has been aborted. The
connection is deleted from the system and all further
operations on it are invalid.

RBUF points to the head of a chain of receive buffers;

SBUF points to the head of a chain of transmit buffers; if
there are no buffers to be returned, NULL is returned.

ConOpen Connection open signal. The connection has been
established with the foreign host and data
transmission may now actually begin. If a passive
listen was specified in TCP'Open, this signal means
that it is now legal to queue data for transmission.
No parameters are returned.

ConRefused Connection was refused. The connection attempt with
the foreign host has been rejected. The user should
close or abort the connection. No parameters are
returned.

ConRetran Excessive retransmissions are occurring on the TCP
connection. This is purely a notification, and no
specific user action is required. Retransmissions
will continue unless the user aborts the connection.

NOP No operation. Occasionally the network process will
signal the user process for reasons purely internal to
the network intrinsics. No action is required of the
user program; no parameters are returned. The user
program may return to the IOWAIT as if nothing had
happened.

I
-35-

Report No. 4856 Bolt Beranek and Newman Inc.

I IV BA
length := Net'Error(errorcodeline);

ERRORCODE is the error code returned by any of the other
TCP/IP intrinsics.

LINE is a byte array into which a text string describing
the error will be written.

LENGTH is the length of the error message in characters
(positive count).

The error code returned from a TCP/IP intrinsic will be

interpreted and a descriptive message written into LINE. The

length of the message will be returned as the value of the

intrinsic. If the error code is not recognized, a message to

that effect will be returned in LINE.

For a list of the types of errors that may be encountered,

see the section below entitled Network Intrinsic Error Codes.

I IA DV IV
filenum := IP'Open(Ulbuf.FHIAprotocolnum);

UIbuf is the connection block described below.

FHIA is the foreign host internet address, or zero.

PROTOCOLNUM is the internet protocol number to use.

IP'Open initiates an IP connection on an unassigned port.

When this intrinsic returns, a connection has been defined in the

system. and both sending and receiving may begin. If there is a

problem opening the connection, the error will be returned via

Net'Complete.

-36-

Report No. 4856 Bolt Beranek and Newman Inc.

The value of filenum is the value that will be returned from

IOWAIT when there is activity regarding the connection.

I IA IA

errnum := IP'Send(UIbufbfradr);

Ulbuf is the connection block described below.

BFRADR is the address of the first word of the datagram to be
sent.

IP'Send will queue one buffer at a time for transmission

over the connection indicated by UIbuf. If the buffer is

successfully queued, BFRADR will be set to zero. If a problem

occurs, an error code will be returned.

The intrinsic does not wait for the buffer to be sent.

Datagrams that have been sent are returned to the user via

Net' Complete.

The internet source address (in'srcadr) will be set by the

system. as will the internet header checksum. Any previous

values in these fields will be lost.

I IA IA

errnum := IP'Receive(UIbuf.bfradr);

UIbuf is the connection descriptor block described below.

BFRADR is a buffer for receiving datagrams.

IP'Receive will queue the buffer for receipt of a datagram.

If the buffer is successfully queued, BFRADR will be set to zero.

An error code will be returned if a problem arises.

-37-

Report No. 4856 Bolt Beranek and Newman Inc.

Datagrams are passed to the user one datagram per buffer.

If the datagram is longer than the buffer provided, the excess

bytes will be lost. The actual number of bytes placed in the

buffer will be returned in UBO'DATAGRAMSIZE. If the datagram

received is shorter than the buffer provided, the remainder of

the buffer will be unused and unchanged.

This intrinsic does not wait for data to be read. Incoming

datagrams are received via the Net'Complete intrinsic.

I IA
errnum := IP'Close(UIbuf);

UIbuf is the connection descriptor block described below.

IP'Close will initiate closing of the IP connection.

Buffers may not be queued for either sending or receiving on this

connection after closing has been initiated. Data already queued

for transmission, or datagrams arriving (if there are receive

buffers queued), may still proceed. If closing could not be

initiated, an error code will be returned; if successful,

IP'Close will return zero.

A user program that uses the TCP/IP intrinsics should

include the following lines of code near the beginning of the

program.

$include comdefs.source.network

$include netdefs.source.network

-38-

Report No. 4856 Bolt Beranek and Newman Inc.

The files contain the symbol definitions needed to use the

intrinsics. The TCP/IP intrinsics may be defined with the

intrinsic statement, such as

intrinsic (netintr.pub.network) tcp'open.tcp'close;

The symbols used in this document are the same as the ones

defined in the files just described.

6.1.1 UIbuf format

The user program will need to have one UIbuf array for each

open connection desired. The format of this array should be of

no concern to the user. It is manipulated solely by the network

intrinsics. Altering the contents of this array by other means

could result in the process aborting or the connection being

terminated. The user may read the contents of the array if

desired.

integer array UIbuf(O:uib'len-1);

Offset Value

uib'Cn Connection block index number
uib'ICBseg Interface Control Block data segment number
uib'tfrin Resource Identification number for network
uib'vw User stack verification word
uib'Smsgfile File number of TCPMF.PUB.NETWORK
uib'msgfile File number of private message file

-39-

Report No. 4856 Bolt Beranek and Newman Inc.

6.1.2 MSGBUF format

This is an integer array (0:10) that is used in IOWAIT as

the destination buffer for messages from the TCP network process

to the Net'Complete intrinsic. It is a scratch region and has no

useful data as far as the user program is concerned. The

contents of this array should not be modified between the exit

from IOWAIT and the call to Net'Complete, but may be modified any

other time without harm.

One MSGBUF array will suffice for all connections combined.

Since the array is used only between the IOWAIT and Net'Complete

calls, it is, in effect, shared by all connections.

6.1.3 Transmit and Receive buffer overhead format

The buffer overhead for transmit and receive buffers is

roughly identical. The same symbols are used for both. Buffers

are linked into chains through the link word UBO'LINK. Buffer

chains are terminated by a value of NULL in the link field.

-40-

Report No. 4856 Bolt Beranek and Newman Inc.

Offset Value

ubo'link Link pointer to next buffer, or NULL.
ubo'len Length and status flags. Subfields are:

ubo'inuse Buffer-in-use flag;
ubo'eol End-of-letter flag (TCP only);
ubo'byc Buffer byte count (size of data area);

ubo'urgent Urgent data indicator (TCP only);
ubo'datagramsize Number of bytes in received datagram (IP only);
ubo'data First word containing data.

The in-use flag is set and cleared by the network intrinsics

for the convenience of the user program. but is not otherwise

important. The EOL flag is not manipulated directly by the user

program. The flag is changed by the TCP'Send intrinsic according

to the EOL parameter. The flag is not used on the receive side.

The byte count field indicates the size of the data area. in

bytes, in the buffer. The count is not modified by the network

intrinsics. When transmitting data via TCP, if the urgent

pointer is greater than zero, the buffer is assumed to contain

urgent data. If negative or zero, it is assumed the data is not

urgent. In receiving TCP data. the urgent pointer indicates the

number of bytes of data in the buffer that are considered urgent,

starting from the beginning of the buffer. If zero or negative,

the data is not urgent. When receiving IP datagrams, the total

length in bytes of the received datagram will be placed in

UBO'DATAGRAMSIZE. This field is ignored on the transmit side.

Offset UBO'DATA in the buffer contains the first byte of

data space in the buffer. Assuming a pointer to the buffer is in

-41-

Report No. 4856 Bolt Beranek and Newman Inc.

the variable BADDR, a byte pointer to the first data byte is

(@BADDR+ubo'data)&LSL(1) or @BADDR(ubo'data)&LSL(1)

The buffer size, in words, is given by the formula

ubo'data + (BADDR(ubo'byc) + 1) / 2

6.1.4 Network Intrinsic error codes.

The following error codes are used by all the network

intrinsics. Error codes are always negative irtegers. The major

error class is a multiple of -100, and the error subclass, if

any, is a number from 0 to -99. The error mnemonics given below

are listed in the file COMDEFS.SOURCE.NETWORK.

Error code Meaning

NoNet Network process or network interface block
missing.

NoConnections Cannot open another connection at this time.
All available connection blocks are in use.

IllegalArg An illegal argument was supplied. If the
subclass is zero, an option-variable
intrinsic was not supplied as a required
argument. If the subclass is less than 10.
it indicates which argument is bad. If the
subclass is 10-99, the high digit indicates
which argument has bad format, and the low
digit indicates which item is at fault.
Typical errors are buffers whose byte count
is zero, or buffers with internal structure
whose internal pointers are inconsistent or
null.

-42-

Report No. 4856 Bolt Beranek and Newman Inc.

NoMsgFile Could not open one of the private message
files.

CantWriteMF Could not perform FWRITE on a message file.

SendClosed Transmit side state does not allow sending of
data at this time. This will happen if
connection is closed or if opened with a
passive listen and the ConOpen has not yet
been received.

RcveClosed The receive side is closed.

WrongCnType A TCP intrinsic was called for an IP
connection, or vice versa. If the subclass
is zero, UIbuf passed describes a TCP
connection; if the subclass is one, UIbuf
describes an IP connection.

InternalError The intrinsics have detected an inconsistency
in something. Things may be in a very bad
state. Report this to a systems person with
as much detail as possible.

SignalLost A TCP message to the user has been lost or
mangled. This could occur if the MSGBUF from
IOWAIT was overwritten before being passed to
Net'Complete.

BufferAlreadyQd The buffer passed was already on the list of
buffers the system had queued. The buffer is
not added to the queue again.

OpenRefused The attempt to create a connection has been
rejected. The arguments to TCP'Open or
IP'Open are potentially legal, but request
some network resource or activity that cannot
be satisfied at this time.

NoConnection The connection described by UIbuf does not
seem to exist, or is not owned by this
process. All operations on the connection
will be refused.

Other error codes may be added as needed in the future.

-43-

Report No. 4856 Bolt Beranek and Newman Inc.

6.2 Flow Control Across the Interface

Flow control across the interface between the user process

and the TCP and IP protocol software is implemented through the

use of message files. The message files act as control channels

to transmit flow control and status messages between the user

process and the TCP or IP. Each connection makes use of two

message files. A general input message file is used to transmit

control messages from user processes to the TCP and IP. All user

processes share the same general input message file. Each

connection also uses a private message file to convey control and

status information from the system protocol process to the user

process.

The control messages passed between the user process and the

system protocol process are short data buffers. These buffers

contain the message type along with other information associated

with the particular command. The formats for each of the message

types is shown in appendix D.

6.3 Interface Control Structures

Each network connection has an associated TCP or IF

interface control block. These blocks include a set of pointers

and data segment numbers used to keep track of buffers within

both the user process and the system protocol process. The

-44-

I
Report No. 4856 Bolt Beranek and Newman Inc.

pointers contain buffer addresses relative to the beginning of

the stack data segment for each process. A diagram of the TCP

and IP interface control blocks is given in appendix E.

The control blocks are maintained in a separate data segment

shared by both the user and system protocol processes. The data

segment is initialized by the system protocol process when it

starts up. The initialization of the data segment divides it

into a number of control blocks. Individual control blocks are

initialized by the TCP'OPEN and IP'OPEN intrinsics.

Responsibility for releasing the control blocks is shared among

the TCP'CLOSE. TCP'ABORT. TCP'WAIT and IP'CLOSE intrinsics.

6.4 Windowing, Acknowledgment. and Retransmission

The receive window size and data segment acknowledgment are

completely dependent on the number of buffers the user process

allocates to a connection. The receive window size of a

connection is always set to the amount of free buffer space the

user process allocates to the receive side of a connection.

Acknowledgments of incoming TCP segments are limited to those

sequence numbers which fit in the receive window.

Acknowledgments are sent as soon as data is copied from the

system protocol buffers to the user protocol buffers.

-45-

Report No. 4856 Bolt Beranek and Newman Inc.

The initial retransmission algorithm is extremely simple.

The first retransmission of unacknowledged data occurs 3 seconds

after the original transmission. The second retransmission

occurs 6 seconds after the first. The third and successive

retransmissions occur 15 seconds after the previous

retransmissions. After the third retransmission fails, the user

program is informed that an excessive number of retransmissions

has occurred.

-46-

I
Report No. 4856 Bolt Beranek and Newman Inc.

7 Protocol Software Buffering Scheme

Data buffer management is the most important component of

the network protocol software. Data buffers perform the key

functions of data storage and data communication within the

protocol software. These functions have complex and conflicting

requirements which must be balanced by the buffer management

scheme. An understanding of the buffer management scheme

therefore begins with an understanding of its requirements.

First, data buffers must be considered a scarce resource

shared by a number of competing "interests" within the protocol

software. These "interests" include the various protocol layers

as well as individual network connections within the TCP layer.

The major problem is how to effectively allocate buffer resources

among these interests. This problem becomes particularly

difficult when there is a shortage of buffers.

An examination of the buffer requirements shows that they

fall into two categories. The first category includes those

buffers used to support general network functions. This includes

buffers used in the 1822 and Internet protocol layers. These

buffers dre assigned to move and store data in these protocol

layers without regard to particular network connections. The

second category includes those buffers used by the TCP protocol

to support specific connections.

-47-

Report No. 4856 Bolt Beranek and Newman Inc.

The distinction between the two buffer categories is

important because buffer use within each category is controlled

by a different set of events. The use of buffers assigned to the

general network functions can be controlled by the system

protocol software. Buffers are processed through the Internet

and 1822 protocol layers without regard to the behavior of user

processes and their effect on individual connections. Buffers

assigned to the connection specific network functions in the TCP

and higher level protocol layers are greatly affected by events

which occur in user processes. The rate at which data is

accepted from or transmitted to the ARPANET by user processes is

totally unpredictable. This unpredictability makes it difficult

for the system protocol process to effectively assign buffer

resources to individual network connections.

Two buffer pools are used to separate those buffering

functions shared by all network connections from the connection

specific buffering functions. A network buffer pool, maintained

by the system protocol process, is used to support the 1822 and

Internet and some TCP buffering functions. A user buffer pool,

maintained by each user protocol process is used to support

connection dependent buffering functions for the TCP and higher

level protocols.

-48-

Report No. 4856 Bolt Beranek and Newman Inc.

7.1 Network Buffer Pool

The network buffer pool supports the following specific

functions.

- movement of network packets from the INP driver 1822 and
.Internet protocol layers;

- storage of Internet datagram fragments in the Internet
protocol layer;

- storage of unacknowledged TCP segments which do not fall
into the current window;

- movement of network packets from the TCP layer through the
Internet and 1822 layer to the INP driver.

The network buffer pool is maintained on the system protocol

process stack where it can be accessed easily by the various

system protocol layers. All of the buffers in the pool are the

same size to minimize the amount of software overhead needed to

maintain the buffers. The buffer size is matched to the maximum

frame size (128 bytes) which may be transmitted over the X.25

link between the INP and the ARPANET IMP.

The size choice is the result of two constraints. First.

the buffers used to catch incoming data must be large enough for

the largest incoming network packet. The packets are transferred

directly into memory by the INP hardware making it impossible for

a packet to cross buffer boundaries. Second, the single size

buffer scheme limits the amount of software overhead needed to

maintain the buffer pool.

-49-

Report No. 4856 Bolt Beranek and Newman Inc.

The single size buffer scheme does not waste buffer space

because the buffer size is well matched with the data it

processes. The 128 byte buffer size allows room for all of the

protocol headers and a small amount of data. Messages with more

data will use multiple buffers. The buffers are large enough to

hold a significant amount of data, yet small enough to limit the

waste caused by partially filled buffers.

No attempt is made to assign network buffers to any

particular protocol layer or task. Buffers are allocated either

when data is read from ,ine ARPANET or when the TCP layer sends

data out to the ARPANET.

7.1.1 Packet Compaction

When the total number of network buffers in the free list

falls below a set value, a data compaction algorithm is invoked.

This algorithm searches for partially filled buffers used to

store Internet datagram fragments and unacknowledged TCP segments

waiting to be transferred to a user process. These buffers are

chosen because processing of the data in them is indefinitely

suspended. Compaction of the data in these buffers allows some

of the buffers to be released to the free list.

-50-

I
Report No. 4856 Bolt Beranek and Newman Inc.

7.1.2 Buffer Recycling

A buffer recycling algorithm is invoked when the system

protocol process runs out of free network buffers. The algorithm

allows buffers to be reused even if they currently contain data.

The mechanism works by identifying which data buffers can be

reused without losing irreplaceable information. These buffers

are sorted in a priority scheme which allows the least important

buffers to be recycled first. The buffer recycling scheme

prevents one socket from tying up too much of the network buffer

resources. It also helps assure a supply of.network buffers even

under heavy load conditions.

The buffer algorithm scheme divides network buffers into

three categories: free buffers, in-use buffers, and aging

buffers. Free buffers are available for immediate use by any

protocol layer and are maintained on a common free list. In-use

buffers are buffers bound to messages currently being processed

and cannot be used for any other purpose. Aging buffers are used

in messages where processing is suspended for any number of

reasons. These buffers are placed in one of two special lists

arranged in order of decreasing age. That is,, message buffers

which have been blocked for the longest time are at the front of

the queue, while the message buffers which were most recently

blocked are at the end of the queue.

-51-

Report No. 4856 Bolt Beranek and Newman Inc.

There are two points in the protocol software where messages

may be blocked. The first point is in the Internet Protocol

software. Fragmented datagrams cannot be passed on to the TCP

and can be blocked indefinitely if one or more of the fragments

which make up the datagram is lost. A duplicate datagram may

eventually be transmitted leaving the fragmented datagram in a

suspended state. The second blocking point is in the TCP

software. Unacknowledged segments sent by a foreign host remain

suspended in the TCP until they are transferred to a user process

buffer. Any segments which are not transferred to a user process

will remain blocked indefinitely.

Buffer recycling is implemented through buffer aging lists

which are adjuncts to the buffer free list. When an incoming

message is blocked, its buffers are attached to the end of one of

two aging lists. Buffers bound to datagram fragments are

attached to one aging list while buffers bound to TCP segments

waiting to be read by user processes are attached to the second

aging list.

The aging lists are periodically manipulated when a new

datagram fragment comes in or when a user process receives some

data from the TCP. Buffers associated with the particular

datagram fragments or TCP segments are moved to the end of their

respective aging lists. This helps assure that any data which

has a chance of being used will not be thrown away.

-52-

I
Report No. 4856 Bolt Beranek and Newman Inc.

The buffers bound to fragmented datagrams are recycled first

because they are the most expendable. Blocked datagram buffers

may be a part of datagrams which have been retransmitted and

passed on to the TCP. When the blocked datagram buffers are

exhausted the buffers bound to blocked TCP segments are used.

These buffers contain the unacknowledged segments which have not

been claimed by a user process. The assumptions here are that

the user process will never claim these segments and that they

are expendable.

7.2 User Process Buffer Pool

The user process is responsible for maintaining a set of

fixed length buffers for passing the user data to the TCP. Each

buffer must include a four-byte header along with 80 bytes of

data space.

The first element of the header is used as either a byte

count or a full buffer marker. The count is used by the TCPSEND

intrinsic to indicate the number of data bytes in the buffer.

The TCPRECEIVE intrinsic uses the buffer full marker to identify

buffers which may be reclaimed by the user process.

The second element in the array header contains a list

pointer. This pointer is maintained by the intrinsic software

and should not be altered by the user process until the buffer is

-53-

Report No. 4&856 Bolt Beranek and Newman Inc.

released.

-514-

I
Report No. 4856 Bolt Beranek and Newman Inc.

8 Data Flow through the Protocol Software

Data flow through the protocol software is effected through

a series of tests and function calls. The tests check the type

and processing state of each packet while the function calls

perform specific operations on each packet. These operations

include such things as creating or checking headers and queueing

or de-queueing packet buffers.

Whenever possible, network packets are processed through all

of the system protocol layers without interruption. This helps

increase throughput by minimizing two important parameters.

First, the amount of buffering required to process data is

decreased because all network buffers associated with a packet

are released when the packet has passed through the protocol

software. Second, the time between the receipt of a packet from

the ARPANET and the transmission of an ACK is reduced.

There are a number of instances when the processing of a

packet can be interrupted within the system protocol process.

This can occur when the lack of some resource or event prevents

further processing. Examples of this are as follows:

- Internet datagram fragments waiting for reassembly;

- TCP segments from a foreign host waiting to be read by a
user process;

- TCP segments from a user process waiting for window
allocation before being transmitted to the ARPANET;

-55-

Report No. 4856 Bolt Beranek and Newman Inc.

- TCP segments from a user process already sent to the
ARPANET but waiting for an acknowledgment.

8.1 ARPANET to the User Level Data Flow

Data packets come in from the network via a DMA interface to

the INP network processor. Incoming data is first transferred

into the protocol process via network buffers passed to the

CSREAD intrinsic which places a read request on the DIT queue of

the INP. An arriving network packet is placed in the network

buffer by the INP driver. The system protocol process is

notified of each I/O completion through the IOWAIT intrinsic.

Processing of network packets begins when an IOWAIT call

returns on completion of an CSREAD intrinsic. The first

processing step is to link the network buffers which contain the

pieces of an 1822 packet.

The next processing steps are performed by the 1822 protocol

software. If this is a normal data packet the 1822 header is

removed and the data packet is passed as a datagram to the

Internet Software. The transfer is done by calling a sequence of

Internet protocol routines with the datagram as a parameter.

The Internet software checks the datagram header for

integrity and then tries to find the proper address for this

datagram. If the datagram is not for the local host it is routed

-56-

Report No. 4856 Bolt Beranek and Newman Inc.

to the proper ARPANET host and the network buffers are returned

to the free list.

If the datagram is a fragment of a larger datagram it is

linked to any existing fragments waiting to be processed. If the

new fragment does not complete the incoming datagram, the

fragment is placed in an aging buffer queue next to the youngest

buffer in the partially complete datagram. At this point all

processing on the incoming datagram is suspended until the rest

of the datagram fragments arrive.

A complete datagram can be sent to one of two plaoes. If

the datagram is associated with a raw datagram interface, the

datagram will be copied to the user buffers of the processes

waiting for it. Datagrams associated with a TCP connection are

sent to the TCP protocol software.

The TCP performs a number of functions on incoming segments:

first the segment header is checked to see if it belongs to a

known socket -- if it does. any acknowledgment information from

the header is taken to update the socket status; next, the

segment is checked to see if it falls within a window -- if it is

not within the window (or a reasonable approximation thereof),

the segment is discarded and its buffers are returned to the free

list.

-57-

Report No. 4856 Bolt Beranek and Newman Inc.

Accepted TCP segments are transferred into the user buffers.

The transfer is initiated by the user process which provides a

buffer through the TCP'OPEN or TCP'RECEIVE intrinsic. A command

message sent via the general input message file is used to inform

the system protocol process that a buffer is available. The

system protocol process transfers as much of its segment as

possible to the user buffer. The user process is then notified

of the data transfer via the connection's private message file.

Only the transferred portions of the segments are acknowledged to

the foreign host. Any portions of segments which do not fit in

the receive window are stored in the TCP aging queue.

The acknowledgment may be sent in a number of ways. If the

same network connection has an outgoing packet waiting for

transmission, the acknowledgment information is added to the

outgoing packet. If there is no pending outgoing packet, a check

is made to see if there is sufficient unacknowledged data to

warrant an acknowledgment packet. If there is enough

information, a separate acknowledgment packet is generated and

transmitted out to the ARPANET as if it were a normal message.

If the number of unacknowledged segments is insufficient to

justify an acknowledgment packet. the pending acknowledgment bit

in the TCB is set and a timer is started. If the timer runs out.

an acknowledgment packet is sent regardless of the number of

unacknowledged segments.

-58-

I
Report No. 4856 Bolt Beranek and Newman Inc.

8.2 User Level to the ARPANET Data Flow

Transfer of data from the user process out to the ARPANET

begins with either the TCP'SEND or IP'SEND intrinsic call. The

intrinsic software sends a message to the system protocol process

to inform it that it has data to send. The system protocol

process tests the state of the connection to see if data

transmission is feasible. The following are sufficient

conditions for data transmission out to the ARPANET:

- enough data has collected to justify transmitting it to
the foreign host;

- the user process has specified an EOL in the data
transmission;

- there are fewer than eight outstanding 1822 protocol
packets waiting for RFNMs to the foreign host;

- the waiting data falls within the foreign host's window.

If the state of the connection does not allow a transmission

to occur, a request-to-send data flag is set in the connection

control block. When the connection state changes due to some

external event, a check is made to see if the new state allows

the transmission of waiting data. An example of such an event is

the arrival of a RFNM from a foreign host; in this case all of

the connections to the foreign host are checked for data waiting

for transmission. The connection with data which has been

waiting for the longest time is processed first. An attempt is

made to combine as many of the waiting TCP segments as possible

-59-

Report No. 4856 Bolt Beranek and Newman Inc.

into one data transfer to increase the amount of data

transmitted.

If there is nothing blocking transmission of the data, the

TCP software allocates a buffer. creates the necessary TCP,

Internet, and 1822 headers, and copies the data to be transmitted

from the user buffer to the system's buffer. The TCP header will

include any acknowledgment information for data received on the

return socket associated with the connection.

In order to assure proper transmission of the TCP segment a

retransmission sequence is started. A retransmission timer is

started to wake up the protocol software when a retransmission is

needed. If a timeout occurs, the segment is retransmitted as

soon as the state of the connection allows it. The necessary

conditions for a retransmission are the same as those for the

original transmission. If the segment is partially acknowledged,

the data left in the retransmission queue is only that data

represented by the unacknowledged sequence numbers.

-60-

Report No. 4856 Bolt Beranek and Newman Inc.

9 FTP Program User Document

The HP3000 FTP program is designed to transfer files between

the HP3000 and some other host on the INTERNET. The user starts

a file transfer session by invoking the ftp program with the

command "rv ftp". Once the FTP program has been invoked, there

are two steps involved in transferring files to and from a

foreign host. First the user must establish a connection to the

foreign host and identify himself with a user name and password.

Once logged in, the user can invoke a set of commands described

below to transfer files to and from the HP3000. During a session

the user can connect to a number of hosts and transfer any number

of files. The only limitations are that a user can only connect

to one host at a time and can only transfer one file at a time.

It is important to remember that the user's access to files

on both the local host (HP3000) and the foreign host is limited

by the normal access control mechanisms on both systems. In

using file name strings to identify files on either the local

host or foreign host the user must use the standard naming

conventions appropriate to the host on which the files reside.

9.1 FTP Commands

The following is an alphabetized list of the available FTP

commands. All FTP commands consist of three or four characters.

-61-

Report No. 4856 Bolt Beranek and Newman Inc.

The items enclosed in braces { are parameter strings.

ACCT {account name} - This command is used specify an account

number to the foreign host. The form of the account name

will depend on which foreign host is involved. Many foreign

hosts do not require account information.

APPE (file name} - This command will cause the FTP to append a

local file to an existing file on the foreign host. The

foreign host file name is specified as a parameter to the

APPE command. The FTP program will prompt the user for the

name of the local file.

CON {host name} - This command opens a connection to the

foreign host specified by the host name parameter string.

Only one connection can be active at any given time

CLOS - This command closes the connection to a foreign host.

DELE {file name} - This commands deletes the foreign host file

specified in the file name parameter string.

LIST (directory name} - This command gets a listing of a

foreign host directory. The directory name is specified as

a parameter string. The directory information is printed

out on the user's terminal.

NLST (directory name) - This command gets a listing of a

foreign host directory and places it in a local file. The

-62-

Report No. 4856 Bolt Beranek and Newman Inc.

FTP program will prompt the user for the file name of the

local file.

OPEN (host name} - This command performs the same function as

the CON command.

PASS {password} - This command specifies a user password to the

foreign host. The password is needed to identify the user

to the foreign host

QUIT - This command closes all connections to the foreign host

and exits the FTP program.

RETR {file name} - This command retrieves a file from the

foreign host and stores it on the local host. The command's

file name parameter is used to identify the file on the

foreign host. The FTP program will prompt the user for the

name of the local file used to hold the transferred data.

The FTP program will also prompt the user for the local

file's record size in bytes and the number of records in the

local file.

RNFR {file name) - This command specifies a file on the foreign

host which is to be renamed. The file name parameter

specifies the old name of the file. The command is used in

conjunction with and before the RNTO command which specifies

the new file name.

-63-

Report No. 4856 Bolt Beranek and Newman Inc.

RNTO {file name} - This command specifies the new file name of

a renamed file on the foreign host. The file name parameter

specifies the new name of the file. The command is used in

conjunction with and after the RNFR command which specifies

the old file name.

STOR {file name} - This command is used to transfer a file from

the local host to a file on the foreign host. The file name

parameter is the name of the destination file on the foreign

host. The FTP program will prompt the user for the name of

the local file.

USER {user name) - This command is used to identify the user to

the foreign host.

9.2 Example of an FTP Session

The following is an example of a typical FTP session in

which data from a local file named "fum" is sent from an HP3000

to the host BBN-VAX in a file named "foo". The lines which begin

with the ">" prompt character are user command lines to the FTP.

The other lines are reponses from either the HP3000 User FTP or

the BSN-VAX Server FTP. Lines which begin with an integer number

are from the BBN-VAX FTP.

:rv uftp /user command which invokes the FTP

-64-

Report No. 4856 Bolt Beranek and Newman Inc.

HP3000 USER FTP VERSION 0 /FTP herald and prompt message

> open bbn-vax /user command to open a connection

/to the host bbn-hp

trying to open a connection to bbn-vax /reassuring messages

connection open /from the User FTP

220 BBN-VAX Experimental Server FTP /herald from bbn-vax

>USER jones /specify user login name

331 Enter PASS Command /bbn vax accepts user name and

/asks for pass name

>PASS lslsls /pass command with password

230 User Logged in /BBN-Vax tells user all is well

>STOR foo /user store local file into a file

/named foo on the foreign host

local file name: foo /user specifies local file name

/after FTP requests it

data connection open /User FTP indicates start of data

/transmission

125 Storing "foo" started okay /BBN-Vax has started receiving data

finished /User FTP has finished sending data

-65-

Report No. 4856 Bolt Beranek and Newman Inc.

228 File transfer completed okay /BBN-Vax has received the
data

close started /data connection is closing

close completed /data connection is closed

>quit /user closes FTP connection and

/exits the FTP program

-66-

Report No. 4856 Bolt Beranek and Newman Inc.

10 TELNET Program User Document

The HP3000 TELNET program allows a user to log into any

other host on the INTERNET. The user starts a TELNET session by

invoking the command "rv utel". Once the TELNET program has been

invoked the user has access to a set of commands described below

which allow him to connect to a foreign host and specify the

conditions of that connection. A connection to a foreign host is

established using either the OPEN or CON commands. Once a

connection is established, normally typed characters are

automatically sent to the command line interpreter of the foreign

host. This allows the user to use the foreign host as if he were

attached to it via a local terminal. The only exceptions to this

are special command lines intended for the HP3000 User TELNET

program. These command lines begin with the "'" character and

contain one of the TELNET commands described below. A user can

send a line which starts with a "" character to the foreign host

by beginning with two "" characters.

Because the HP3000 only supports half duplex terminals, all

characters typed by the user are echoed by the HP3000 rather than

the foreign host. The characters are sent out over the network

when the user types a carriage return. This feature prevents the

HP3000 TELNET user from using interactive character-at-a-time

programs on the foreign host. In addition, data transmissions

from the foreign host take precedence over data typed by the

-67-

Report No. 4856 Bolt Beranek and Newman Inc.

user. Any message from the foreign host will therefore

obliterate all of the characters the user has typed since the

last carriage return.

10.1 TELNET Commands

The following is an alphabetized list of the available

TELNET commands. The items enclosed in braces {} are parameter

strings. Any commands typed after a connection has been made to

the foreign host must be preceded by a "'" character. The

CAPITALIZED characters in each command are required; the lower

case characters are optional.

AO - Commands a user program on the foreign host to stop

printing. Most hosts including the HP3000 do not implement

this command.

AYT - ARE YOU THERE? This is a desperation command sent to the

foreign host which has not responded for some time. If the

foreign host is an HP3000 it will respond with YES.

BReak - Sends a break command to the foreign host. If the

foreign host is an HP3000 the command's effect will be the

same as a break typed on a terminal directly connected to an

HP3000.

COnnect (host name) (socket no) - Initiates a TELNET connection

-68-

Report No. 4856 Bolt Beranek and Newman Inc.

to the foreign host specified in the host name string. The

socket specification is optional and should not be used

unless the foreign host has a TELNET on some non-standard

socket.

CLose - Closes the TELNET connection to the foreign host. If

the foreign host is dead or not responding, the connection

will hang indefinitely. If the connection hangs, the user

should use the QUIT command to force the connection to

close.

Interrupt - Sends an interrupt command to the foreign host.

The interpretation of this command is up to the foreign

host. The command is equivalent to a break if the foreign

host is an HP3000.

Open {host name) {socket no) - This command is the same as the

CONNECT command.

Quit - Aborts a TELNET connection if one exists and exits from

the TELNET program.

Sync - Sends a synch message to the foreign host. The

interpretation of this message is up to the foreign host.

If the foreign host is an HP3000 this message has no meaning

and will be ignored.

^Y - Sends a control y to the foreign host. This command only

-69-

Report No. 4856 Bolt Beranek and Newman Inc.

has meaning if the foreign host is an HP3000. Other foreign

hosts will probably ignore it. Remember the control y is

sent if the user types "*Y". Simply typing "Y" will send

the character "Y" to the foreign host.

10.2 Example of a TELNET Session

The following is an example of a typical TELNET session in

which a user connects to the host BBN-HP.

:rv utel /user invokes the TELNET programn

HP3000 USER TELNET version 0 /TELNET herald and prompt character

>open bbn-hp /user opens a connection to bbn-hp

trying to open a connection to bbn-hp /reassuring lines from

connection open /the TELNET program

Welcome to BBN-HP server TELNET /herald from BBN-HP

Login: Jones /prompt for user name. user

/responded by typing Jones

Password: ldldld /prompt for password, user

/responded with a password

:HP3000 / MPE IV C.00.01 THU ... /herald from HP3000 MPE

/operating system

/user prompt from MPE

-70-

Report No. 4856 Bolt Beranekc and Newman Inc.

/operating system. user

/is now free to type

/!4PE commands

^close /user closes connection

close starting /reassuring feedback form

close completed /TELNET

> /prompt waiting for next

/TELNET command

>quit /exit TELNET

/prompt from local host

Report No. 4856 Bolt Beranek and Newman Inc.

APPENDIX A - HP3000 to ARPANET Link

I X.25 LA C30HP3000 N ' IMP

IPI

-72-

Report No. 4856 Bolt Beranek and Newman Inc*'

APPENDIX B -Protocol Software Organization

MBB

INP

Driver

Device
Tble

High Priority I
User Mode 12 r Transmission

Control Block

A. I

Server Telnet User Telnet Ue T
PormProgram Program

Pseudo-TTY 11II111 1111
Logical Devices PTY Users Users
(one each user)

HP3000
Command Interpreter

-- Private Message Files
General Input Message File

-73-

Report No. 4856 Bolt Beranek and Newman Inc.

APPENDIX C - Control Structures

.----------------

* I

CONNECTION -------- > POINTERS
HASH -------- > TO OTHER
TABLE ------- > CONNECTIONS

I
II----------------

V

-------- >POINTER TO NEXT CONNECTION BLOCK
--------- >POINTER TO PREV CONNECTION BLOCK

CONNECTION +-------+ +-------+
CONTROL --------------- >1 --- > I DATA WAITING
BLOCK I-----------+ FOR THE USER

I + i ------- -------... ...----------+ I I . .+ + . .

--------------- -------+ ------- +
I +-- --- >'I ' CONNECTION

3 I 'TIMER BLOCKS
V +--------+ +--------+

. ------

IFOREIGN I +----PNTR TO NEXT TCP AGE BLOCK
I HOST I
I BLOCK +-------- PNTR TO PREVTCP AGE BLOCK

PROTOCOL CONTROL BUFFER AND LIST STRUCTURES

-74-

Report No. 41856 Bolt Beranek and Newman Inc.

NETWORK RECOURCES CONTROL BLOCK

IPNTR - INTERNET AGE LIST POINTER

LIPNTR - END OF INTERNET AGE LIST POINTER!
--- I

ITCPNTR - TCP AGE LIST POINTER
--- I
ILTCPNTR - END OF TCP AGE LIST POINTER

-75-

Report No. 4856 Bolt Beranek and Newman Inc.

FOREIGN HOST TABLE

HEADER 1
ISENTINAL - OFFSET POINTER TO END OF TABLE 1

UNUSEDI
--

FIRST ENTRY IHOSTID - ARPANET HOSTID OF FIRST ENTRY

IIMPID - ARPANET IMPID OF FIRST ENTRY

ICONCNT - NUMBER OF CONNECTIONS TO HOST

RFNMCNT - NUMBER OF OUTSTANDING RFNMS
--

1QUENCH - SOURCE QUENCH INFO
--

8 spaces for 1822 message ids

SECOND ENTRY I HOSTID

IIMPID

--

ICONCNT
--- I

RFNMCNT
I---I
1QUENCH

8 spaces for 1822 message ids.

-- I

LAST ENTRY IHOSTID

IMPIDI

ICONCNT

--

RFNMCNT

' QUENCH

18 spaces for 1822 message ids

-76-

I
Report No. 4856 Bolt Beranek and Newman Inc.

CONNECTION CONTROL BLOCK

NEXTCON - POINTER TO NEXT CONTROL BLOCK
-- I
PREVCON - POINTER TO PREVIOUS CONTROL BLOCK

I--I
FORPORT - FOREIGN HOST PORT

LOCPORT - LOCAL HOST PORT
I--
STATE - CONNECTION STATE

CONNO - TCP INTERFACE CONTROL BLOCK NO
I--
MAXMSG - FOREIGN HOST MAX MESSAGE SIZE

I--
HASHVAL - HASH FOR INDEX TO CONNECTION TABLE!

I--i
PROTOMSG - AREA FOR OUTGOING PROTOCOL BITS

I---

OPENSTATE - OPEN TYPE (LISTEN OR OPEN)

WAITREASON - POINTER TO TIMER TABLE BLOCKS

I--
OUTDATA - POINTER TO DATA WAITING FOR NET

--I

WAITDATA - POINTER TO DATA WAITING FOR USER

TCP - POINTER TO NEXT RECYCLE SEGMENT
I--
PTCP -POINTER TO PREV RECYCLE SEGMENT

--

FID - CONNECTION PRIVATE MESSAGE FILE IDI
--
UNUSED

I--
RTRANTIME - RETRANSMISSION TIMEOUT VALUE

ARTRANTIME - AVG RETRANSMISSION TIMEOUT.VALUE
--

FHOSTENT - POINTER TO FOREIGN HOST TABLE
--
SRCADDR - SOURCE (FOREIGN HOST) ADDRESS

1 (32 bits)
-- I

/-77

-77-

Report No. 4~856 Bolt Beranek and Newman Inc.

CONNECTION CONTROL BLOCK CONTINUED

/---/
IRCVNXT - NEXT EXPECTED RECEIVE SEQUENCE
1(32 bits) NUMBER

IRCVWND - RECIEVE WINDOW SIZE
1(32 bits
-- I

IRCVUP - RECEIVE URGENT POINTER
1 (32 bits)

-- I

IUNUSED
1(32 bits)

--

IIRS -INITIAL RECEIVE SEQUENCE NUMBER
1(32 bits)

ISNDUNA - FIRST SEQUENCE NUMBER SENT BUT
1(32 bits) NOT ACKED

!--

1 SNDNXT - NEXT SEQUENCE NUMBER TO BE SENT
1 (32 bits)
--- -----------

SNDWND - WINDOW ADVERTISED BY FOREIGN HOST
1(32 bits)

ISNDUP - SEND URGENT POINTER
1 (32 bits
--

SNDWL -SEND SEQUENCE FOR LAST WINDOW
1(32 bits) UPDATE
--I

IISS - INITIAL SEND SEQUENCE NUMBER
1 (32 bits)
i --

1 FINACK - SEQUENCE NUMBER OF LAST FIN SENT
1 (32 bits)

IRTRANCNT - NUMBER OF BYTES AWAITING
1 (32 bits) RETRANSMISSION

1 FINRCV - SEQUENCE NUMBER OF RECEIVED FIN
1 (32 bits)

-78-

Report No. 4856 Bolt Beranek and Newman Inc.

FREEBUFFER QUEUE --- >INEXT BUFFER

t--------------------I

NETWERK BUFFER FRE IS

I I-

Report No. 4856 Bolt Beranek and Newman Inc.

OLDEST DATAGRAM SECOND OLDEST
FRAGMENT DATAGRAM FRAGMENT

INTERNET
AGING --->!NEXT DATAGRAM -------- >NEXT DATAGRAM 1--> PTR TO
LIST THIRD

!NEXT BUFFER NEXT BUFFER 1- OLDEST
-------------- --------------

I I

I I

-->!NEXT BUFFER I.. -->INEXT BUFFER .

---------------------- I I ------------- I
, I I

I

I I . . .

-->INULL -->INULL
---------------I II------

INTERNET AGING LIST

-8o-I

II I

Report No. 4856 Bolt Beranek and Newman Inc.

CONNECTION 1 CONNECTION 2
OLDEST UN-ACKED SECOND OLDEST UN-ACKED
SEGMENT BUFFERS SEGMENT BUFFERS

TCP PTR TO
AGING --- >!NEXT SEGMENT I -------- >NEXT SEGMENT 1--> THIRD
LIST - I-------------- OLDEST

INEXT BUFFER . NEXT BUFFER '

------------------------ I I---------------------

a I

-->INEXT BUFFER ~ . -->:NEXT BUFFER
I-----------I I------------------

-- -- -- - - I -- - - - - -

I I I I i I
I I I I . I I

I I I I
S I

-->INELR -->ANGGUI

I I I

I I I

I I I I

I S S I
Ia a a ,__ _ _ __ _ _

TCP AG~INGLS

Report No. 4856 Bolt Beranek and Newman Inc.

TIMER QUEUE ENTRY

1 WAITTIME - WAIT TIME IN SECONDS

CONADDR - POINTER TO CONNECTION BLOCK

WREASON - REASON FOR WAITING
---------- ------------ -- - -- -- - -- -- - -- -- -

PRETIME - POINTER TO PREVIOUS TIMER ENTRY

NXTTIME - POINTER TO NEXT TIMER ENTRY i

NEXTWAIT - PNTR TO NEXT ENTRY FOR THIS CONECTION

1 SEQCOUNT - NO. OCTETS IN ACK IF WAIT IS FOR ACK
I -82

-82-

Report No. 4856 Bolt Beranek and Newman Inc.

DATA MESSAGE BUFFER STRUCTURE - riEADER BUFFER

HDH HEADER HDH - HDH HEADER WORD

1822 HEADER 1FORMFLAG - FORMAT FLAG WORD

1MTYPE - LEADER FLAG AND MESSAGE TYPE

I HANDLEHOST - HANDLING TYPE AND SOURCE HOST

I SIMP - SOURCE IMP

1MIDTYPE - MESSAGE ID AND SUBTYPE

1MLENGTH - MESSAGE LENGTH
-- ---------- --I
CONTROL WORDS! IPSTRT - POINTER TO FIRST IP HEADER BYTE

I --- I

I TCPSTRT - POINTER TO FIRST TCP HEADER BYTE
--
IDATAOFF - BYTE POINTER TO FIRST TCP DATA BYTE

IURGOFF - OFFSET OF URGENT POINTER IN TCP DATA

IFINFLAG - INDICATES LAST DATA FOR TCP CONNECTION!

ISEGLENOTH - NUMBER OF TCP DATA BYTES

ITCPHDRSZ - SIZE OF TCP HEADER IN BYTES

IFRAG -POINTER TO NEXT DATAGRAM FRAGMENT

IPFRAG - POINTER TO PREVIOUS DATAGRAM FRAGMENT
--
IIP - POINTER TO NEXT DATAGRAM IN AGE LIST I

PIP -PNTR TO PREVIOUS DATAGRAM IN AGE LIST I

INEXTBUF - POINTER TO FIRST DATA BUFFER
-- I

POINTERS FOR 8 MORE DATA BUFFERS
I---
IFIRSTB - FIRST BYTE IN IP FRAGMENT OR

1 (32 bits) FIRST SEQUENCE NUMBER IN TCP SEGMENT 1
-- a
ILASTE - LAST BYTE IN IP FRAGMENT OR

-83-

Report No. 4856 Bolt Beranek and Newman Inc.

DATA MESSAGE BUFFER STRUCTURE - FIRST DATA BUFFER

HDH HEADER 1HDH - HDH HEADER WORD

IP HEADER 1INTERNET - VERSION, IHL, TYPE OF SERVICE

I TOTALSZ - TOTAL LENGTH OF IP DATAGRAM

IID - IP DATAGRAM ID

FLAGFRAG - IP FLAGS AND FRAGMENT OFFSET

1 TTLPROT - TIME TO LIVE AND PROTOCOL

CSUM -IP HEADER CHECKSUM
--

SRC -IP SOURCE ADDRESS
1(32 bits)

IDEST - IP DESTINATION ADDRESS
1 (32 bits)

-- --------- --I

TCP HEADER ISPORT - SOURCE PORT
--

DPORT -DESTINATION PORT

1SEQNO - FIRST SEQUENCE NUMBER

1 (32 bits)

TCPACK - ACKNOWLEDGED SEQUENCE NUMBER
--
IOFFSETFLAG - DATA OFFSET AND TCP CONTROL FLAGS

I WINDOW - ADVERTISED WINDOW AT SENDING HOST
--
ITCPSIJM - TCP CHECKSUM FOR HEADER AND DATA
--
IURPTR - URGENT POINTER
1(32 bits)

IOPTSEC - START OF TCP OPTIONS

-84-

I
Report No. 4856 Bolt Beranek and Newman Inc.

APPENDIX D - Command Message Formats

General Format of Commands to TCP/IP Process

Offset 1 Contents

0 1 Command Type
I I Interface Control Block connection number
2-7 1 Arguments, if any

TCP/IP Message File Commands

Code 1 Meaning

0 Open TCP Connection (see below)
I 1 1 Close TCP Connection

2 1 Abort TCP Connection
3 1 Send TCP Data (see below)
4 Receive TCP Data (see below)
5 f Close TCP/IP process logfile

16 1 Shutdown Network (see below)
7 1 Open IP Connection (see below)
8 Close IP Connection

1 9 Send IP Datagram
10 1 Receive IP Datagram

Arguments to Open TCP Connection Command

I Offset I Meaning

1 2-3 1 Foreign Host InterNet Address (or zero)
4 Foreign Port Number
5 Local Port Number

1 6 Active/passive Listen Flag
7 Initial Window Size

-85-

Report No. 4856 Bolt Beranek and Newman Inc.

Arguments to Send TCP Data Command

Offset 1Meaning
-- I

2 1Number of bytes to send

Arguments to Receive TCP Data Command

Offset I Meaning
--

2 #D Bytes of receive buffer space added

-86-

Report No. 4856 Bolt Beranek and Newman Inc.

Arguments to Network Shutdown Command

1 Offset 1 Meaning
+---

2 1 Password value (numeric)
- - - - - - - - - - - - - - - - - --------- _ _

Arguments to Open IP Connection

1 Offset I Meaning
g---
1 2-3 I Foreign Host Internet Address (or zero) i
' 4 ' Internet Protocol Number

All messages from the TCP/IP process to the user intrinsics

consist of a single word which is the command number.

Command Numbers

1 Code 1 Meaning

100 1 TCP Connection has been opened
101 1 Connection Close request acknowledged
102 1 Connection Aborted

11031 Data Sent
1 104 Data Received
1 105 1 TCP Receive Side Closed
1 106 1 Open Connection Request Refused
1 107 1 Foreign Host Refused Connection
1 108 1 Notification of Excessive Retransmissions

-87-

Report No. 4856 Bolt Beranek and Newman Inc.

APPENDIX E - User Program Data Structures

User's Connection Control Block

1 Offset IMeaning
0 1 Connection Number

1 1 Interface Control Block Segment Number
2 1 RIN Number for Locking ICB tables
3 1 Verification Word
4 File number of Message File to TCP/IP
5 File number of Message File from TCP/IP

Overhead Words of Each User Buffer

1 Offset I Meaning
I---------+---I

0 1 Pointer to next buffer (or zero)
I---

1 bit 0: Buffer In Use Flag
I 1 bit 1: End-of-Letter Flag

1 bit 2-15: Buffer length in bytes

2 1 (if TCP) Urgent-Data Pointer
(if IP) Received Datagram Size in bytes

TCP'Status Buffer Format

I Offset 1 Meaning
-+---I

0 1 Local Port Number
1 Foreign Port Number

2-3 1 Foreign Host's Internet Address
1 4-5 1 Receive Window Size in bytes
1 6-7 1 Transmit Window Size in bytes

-88-

Report No. 4856 Bolt Beranek and Newman Inc.

Overhead Information

Offset I Description
--

0 1 Number of currently open connections
I Flag to inhibit opening new connections
2 1 Recovering from net crash flag
3 1 ICB segment verification word
4 1 DST number of TCP/IP process stack
5 1 DB offset of TCP stack verification wordI
6 1DB offset of TCP/IP connection table

A compile-time parameter NCON determines the number of
connections that may be open concurrently. Beginning at offset 7
of the Interface Control Block, there are NCON words used as
Connection-In-Use flags. The value of these flags is zero if the
connection is not in use. and -1 if it is in use.

Following the array of Connection-In-Use flags, there are
NCON connection descriptors. Each connection descriptor has the
following format:

-89-

Report No. 4856 Bolt Beranek and Newman Inc.

Connection Descriptor

Offset I Meaning
-'--

0 Pointer to head of oldest unreturned
I transmit buffer
+---

1 1 Pointer to head of buffer containing
I data next to be sent
1---

2 I Pointer to next byte to be sent *

1 3 1 Number of bytes in current buffer
I remaining to be sent.

I---------+---I

4-5 1 Foreign Host Internet Address of
next datagram to be sent

-+---I

4 Pointer to head of buffer containing *
data next to be acknowledged

5 1 Pointer to next byte to acknowledge *

--
6 Number of bytes in current buffer *

not yet acknowledged
I---------+---I

7 Transmit side state

-4---8 1 Receive side state

I---------+---I9 1 DB pointer to user control block
I---------+---I

10 1 DST number of user's stack
I---------+---I

11 I bit 0: 0 if TCP; 1 if IP connection
1 bits 1-15: User process number

I---------+---I

12 1 Pointer to head of buffer where next
data received will be written

- ---
13 1 Pointer to next byte of buffer space *

---- --
14 1 Number of free bytes in current buffer *

- ---
15 Pointer to head of oldest unreturned

receive buffer

16 1 Pointer to first byte of data not yet *
I returned to user program

-variable used only by TCP connections
* variable used only by IP connections

-90-

